Skip to main content
Log in

Formation of a catalytically active intermediate for oxidation in H2O2/ionic liquid system: experimental and theoretical investigations

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A metal-free method for activation of hydrogen peroxide (H2O2) is introduced using piperidinium trifluoroacetate (PPHTFA) ionic liquid as catalyst. The catalyst has been used for selective oxidation of thioanisole to its corresponding sulfoxide at room temperature. It was found that the selectivities were reduced by increasing the reaction temperature. In this work, no organic solvents or metallic salts were used for activation of H2O2. Mechanistic studies suggested that the reaction proceeds via in situ formation of trifluoro hydroperoxy species as an active catalytic intermediate. Formation of the catalytic intermediate was screened by NMR, IR and Mass Spectroscopy analysis. Density functional theory calculations at B3LYP/6-31+G* levels revealed that the origin of selectivity is the higher activation energy for overoxidation of sulfoxide at room temperature. The catalyst was recovered and reused with excellent selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.E. Bäckvall, Modern Oxidation Methods (Wiley, Weinheim, 2010)

    Book  Google Scholar 

  2. M. Jereb, Green Chem. 14, 3047 (2012)

    Article  CAS  Google Scholar 

  3. R. Noyori, M. Aoki, K. Sato, Chem. Commun. 1977 (2003)

  4. B. Karimi, M. Ghoreishi-Nezhad, J.H. Clark, Org. Lett. 7, 625 (2005)

    Article  CAS  Google Scholar 

  5. S. Li, K. Su, Z. Li, B. Cheng, Green Chem. 18, 2122 (2016)

    Article  Google Scholar 

  6. B.S. Lane, M. Vogt, V.J. DeRose, K. Burgess, J. Am. Chem. Soc. 124, 11946 (2002)

    Article  CAS  Google Scholar 

  7. J.J. Dong, P. Saisaha, T.G. Meinds, P.L. Alsters, E.G. Ijpeij, R.P. van Summeren, B. Mao, M. Fañanás-Mastral, J.W. de Boer, R. Hage, B.L. Feringa, W.R. Browne, ACS Catal. 2, 1087 (2012)

    Article  CAS  Google Scholar 

  8. W. Adam, C.R. Saha-Möller, P.A. Ganeshpure, Chem. Rev. 101, 3499 (2001)

    Article  CAS  Google Scholar 

  9. E. Doustkhah, S. Rostamnia, Mater. Chem. Phys. 177, 229 (2016)

    Article  CAS  Google Scholar 

  10. J. Wahlen, D.E. De Vos, P.A. Jacobs, Org. Lett. 5, 1777 (2003)

    Article  CAS  Google Scholar 

  11. G. Majetich, R. Hicks, G. Sun, P. McGill, J. Org. Chem. 63, 2564 (1998)

    Article  CAS  Google Scholar 

  12. C.B. Kelly, M.A. Mercadante, N.E. Leadbeater, Chem. Commun. 49, 11133 (2013)

    Article  CAS  Google Scholar 

  13. M.C.A. van Vliet, I.W.C.E. Arends, R.A. Sheldon, Chem. Commun. 263 (1999)

  14. K. Neimann, R. Neumann, Chem. Commun. 487 (2001)

  15. D. Limnios, C.G. Kokotos, Chem. Eur. J. 20, 559 (2014)

    Article  CAS  Google Scholar 

  16. D. Limnios, C.G. Kokotos, J. Org. Chem. 79, 4270 (2014)

    Article  CAS  Google Scholar 

  17. G. Soladie, Synthesis, 185 (1981)

  18. M.C. Carreno, Chem. Rev. 95, 1917 (1995)

    Article  Google Scholar 

  19. B. Karimi, M. Khorasani, ACS Catal. 3, 1657 (2013)

    Article  CAS  Google Scholar 

  20. M. Vafaeezadeh, M. Mahmoodi Hashemi, M. Shakourian-Fard, Catal. Commun. 26, 54 (2012)

    Article  CAS  Google Scholar 

  21. M. Vafaeezadeh, M. Mahmoodi Hashemi, Chem. Eng. J. 221, 254 (2013)

    Article  CAS  Google Scholar 

  22. M. Vafaeezadeh, M. Mahmoodi Hashemi, Process Saf. Environ. Prot. 100, 203 (2016)

    Article  CAS  Google Scholar 

  23. B. Zhang, M. Zhou, M. Cokoja, J. Mink, S. Zang, F.E. Kühn, RSC Adv. 2, 8416 (2012)

    Article  CAS  Google Scholar 

  24. Spartan’10 V102’ (Wavefunction Inc., Irvine, 2010)

  25. J. Ye, J. Wang, X. Wang, M. Zhou, Catal. Commun. 81, 1 (2016)

    Article  CAS  Google Scholar 

  26. S. Rostamnia, B. Gholipour, H. Golchin Hosseini, Process Saf. Environ. Prot. 100, 74 (2016)

    Article  CAS  Google Scholar 

  27. K. Bahrami, M.M. Khodaei, P. Fattahpour, Catal. Sci. Technol. 1, 389 (2011)

    Article  CAS  Google Scholar 

  28. M. Vafaeezadeh, A. Fattahi, J. Phys. Org. Chem. 27, 163 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heshmatollah Alinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinezhad, H., Vafaeezadeh, M. & Mahmoodi Hashemi, M. Formation of a catalytically active intermediate for oxidation in H2O2/ionic liquid system: experimental and theoretical investigations. Res Chem Intermed 43, 2615–2625 (2017). https://doi.org/10.1007/s11164-016-2784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2784-4

Keywords

Navigation